

INTRA-VARIETAL GENETIC VARIABILITY IN SOME ITALIAN MALVASIAS

1) The grapevine variability (morphology, physiology) was observed since the Romans ...

L. JVNII MODERATI COLVMELLAE

RERVSTICA

LIBRI XII

CVRANTE

JO. MATTHIA GESNERO

TOMVS PRIMVS

Cura & Sumptibus Societatis literatae

MDCCLXXXI.

TAR COLVMELLAE LIB. III.

tius orbis fruges, adhibito fludio colonorum, ferre didicerit. quo minus addubitamus de co fructu, qui velut indigena, peculiarifque & vernaculus est hujus soli. Neque enim dubium est, Massici, Surrentinique & Albani atque Caecubi agri vites omnium, quas terra suffinet, in nobilitate vini principes esse.

Ut uva complura genera acinorum habeat.

CAP. IX. Foecunditas ab his forfan desideratur: sed & haec adjuvari potest cultoris industria. Nam si, ut paullo ante retuli. benignissima rerum omnium parens natura quasque genteis atque terras ita muneribus propriis ditavit, ut tamen caeteras non in universum fimilibus dotibus fraudaret: cur eam dubitemus etiam in vitibus praedictam legem servasse? ut quamvis earum genus aliquod praecipue foecundum effe voluerit, tanquam Bituricum, aut bafilicum; non tamen fic Amineum sterile reddiderit, ut ex multis millibus ejus ne paucissimae quidem. vites foecundae, tanquam in Italicis hominibus Albanae illae forores reperiri poffint. Id autem cum sit verisimile, tum etiam verum effe nos docuit experimentum, cum & in Ardeatino agro, quem multis temporibus ipsi ante possedimus, & in Carseolano, itemque

2) Italy, for example, is a Country rich of "grapevine Diversity"...

- A. The geographical position (peninsula at the center of the Mediterranean)
- B. The wide ecological fragmentation (different environments due to the particular topography)
- C. The socio-economic & political diversity (many different realities including wine & grapevine production)

- 3) The different growing environments during the grapevine evolution increased the differentiation in *Vitis vinifera* with several varieties, biotypes and clones
- 4) The selection of genotypes and cultivars was made by farmers considering the agronomic characters (not only the adaptation to the environment)
- 5) Molecular techniques allow to analyze the differences directly at DNA level

http://www.biomedcentral.com/1471-2229/8/127 http://www.biomedcentr

MOLECULAR MARKERS

SSR (Simple Sequence Repeat)

I-SSR (Inter-microsatellites)

RAPD (Random Amplified Polymorphic DNA)

AFLP (Amplified Fragment Length Polymorphism)

SAMPL (Selective Amplification of Microsatellite Polymorphic Loci)

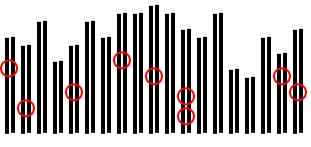
SNP (Single Nucleotide Polymorphism)

S-SAP (Specific Sequence Amplified Polymorphism)

M-SAP (Methyl-Sensitive Amplified length Polymorphism)

REMAP (*REtrotransposon-Microsatellite Amplified Polymorphism*)

IRAP (Inter-Retrotransposon Amplified Polymorphism)

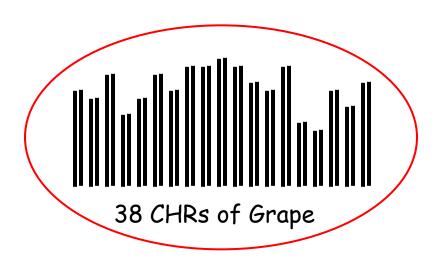

Chloroplast DNA polymorphisms

M-AFLP (Microsatellites Amplified Fragment Length Polymorphism)

ANALYSIS of GENOME

Varietal Identification

microsatellite



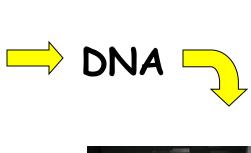
38 CHRs of Grape

SSR analysis (specific genomic regions) identifies the cultivar of grapevine.

Genotypes of the same cultivar showed the same microsatellite profile (SSR alleles).

Intra-varietal variability Analysis of all Genome

Genotypes from a grapevine cultivar (one microsatellite profile) can be discriminated using the different molecular markers of the genome (different biotypes, accessions or clones from a same cultivar).

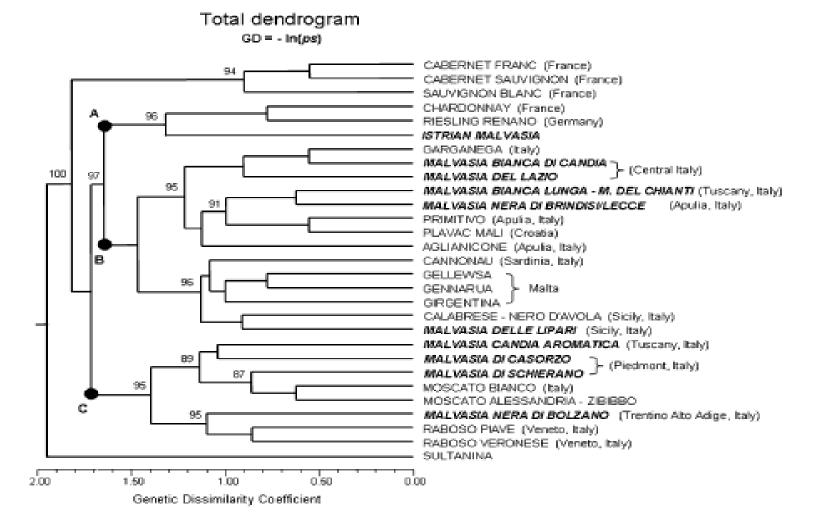

CULTIVAR IDENTIFICATION (SSR)

DNA EXTRACTION BY ROBOT

SSR MIX

CULTIVAR NAME

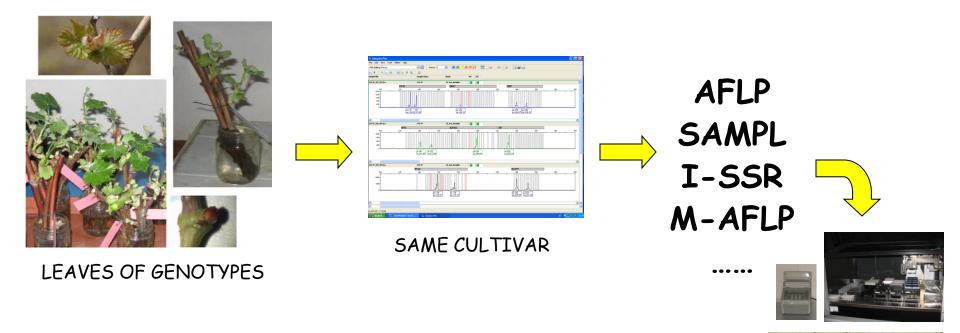
AB3130XL SEQUENCER



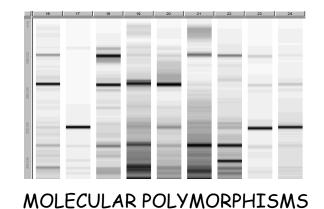
PCR

INTER-VARIETAL GENETIC VARIABILITY of Malvasias

- 1. microsatellite markers (SSR);
- 2. AFLP-based markers (MAFLP, SAMPL, etc) and I-SSR markers

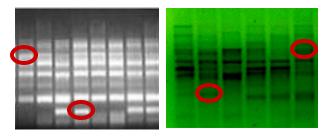


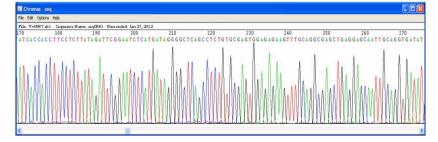
INTRA-VARIETAL GENETIC VARIABILITY


- 6) The CRA-VIT Research Centre for Viticulture of Conegliano has been developing the molecular protocols for analyzing the genetic variability at intra-varietal level (biotypes and clones) by combining techniques to analyze large portions of the genome (AFLP-derived) with markers typical of hypervariable regions as:
 - 1. Specific microsatellite markers (SSR);
 - 2. Regions flanking the microsatellites (I-SSR);
 - 3. regions where the sequence of the repeating pattern changes (i.e. AT/AG) adjacent microsatellites (ASn).

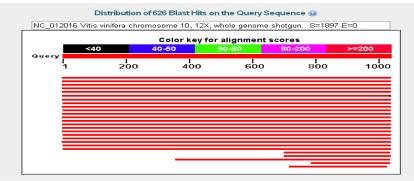
In this way it was possible to have a complete analysis on the grape genome and simultaneously to analize the SSR polymorphisms, importants for the *Vitis* taxonomy.

STUDY OF INTRAVARIETAL GENETIC VARIABILITY





BIOTYPE IDENTIFICATION


DNA POLYMORPHISMS

SEQUENCE OF MARKERS

NUCLEOTIDE DATABASES

□emb AM457386.1											
Score = 171 bits (92), Expect = 7e-39 Identities = 396/536 (74%), Gaps = 56/536 (10%) Strand=Plus/Plus											
Query	1	GGATCAGAAAATGAGAAAATGCACAAAAGGTAAAAAGCCAAACGCATTGATCGTTGAC	58								
Sbjct	17652	GGATCAGAAAATGAGAAAATGCACAAAAAGCTGAAAAGTTAAACCCATTAATCGCGTTGAC	17711								
Query	59	CAGGTAGTCGACCAGATCAGGACCGATCGACCGATTCGTCRGGG-CTAGCGATTTAAATA	117								
Sbjct	17712	CAGGCGGTCGATCAGATCAGGACTGGTCGATCGATTCGTC-GGGACTAGGGATTTAAAGA	17770								
Query	118	C-CTCCCTGYACTTCATTTTCTTTCC-CGT-TTCCTT-TGG-TT-CTTCAAGTG-TTTTG	170								
Sbjct	17771	GACTCC-TGCACGTCGTTTTCTCCAC-TATTC-TTCTCCATTTCTTTAGG-GCTTTTC	17824								
Query	171	TCGATT-CAG-TTGCCTATAAGTGATTTTTGAATCCATT-GCAGCAATTTGAGGGG	223								
Sbjct	17825	AC-ATTTCGGATT-CC-A-AAGACT-AGTTTAAGCAAAGTTTGGACCGATT-GAAGGC	17876								
Query	224	TTCAGATTG-ATTTTT-GGAGG-TTAG-GGCTTTGGATTTGGGACGG-CTTCTCCTCC	276								
Sbjct	17877	TTTTGATTGGATTTTTTGGAGGATTGGAGGCTAGGG-TTTCGGTTTTGGACTACACTTTC	17935								
Query	277	${\tt TTCAS-T-GCGTGTAACAACCGGTTTCAGCTCATTTCCCACKCACCTAGGGTTTTGGG}$	332								
Sbjct	17936	TTCCTCTCGCGCGCCACAACCAAGGTTTTCTCATTTCTCACGCACCTAGGGTTTTGGT	17993								
Query	333	TGTGTGATTCTCTCTACCAGCCTTGTCTCCTTCATCTTTG-CTTTTCTGATGGTTC	389								
Sbjct	17994	TGTGAGTGTTTTCTCTCTACCAGCCTCGTATCCTTTATTTTTGTCTTT-CTCATGGCTC	18052								
Query	390	ATAGGAGAGAGACTR-CTGCCTTTAAGGCACAGKGCAAGCGCCCTAT-TGAGCTGTCTCA	447								
Sbjct	18053	ATAGGAGAGAGTCGGGCA-CCTCTAAGGCACAGGGCAAGCGCCC-AGCTGTGCCGTCTTA	18110								
Query	448	GCCTAC-TCAGACGGAGACTCACCGAAATACGAGGTTTGAAACGACCCTTTTTAGC 502									
Sbjct	18111	GC-TCCCTCAGTTGGAGGCTCGCCGAAAGGCGAGGTTTGACACTACAATTTTCAGC 181	65								

ALIGNMENT SEQUENCES

No mispriming library specified No hyb oligo mishyb library specified Using 1-based sequence positions

WARNING: Unrecognized base in input sequence; Hybridization probe is unacceptable: Tm too low

OLIGO	start	len	tm	gc4	any	3 1	seq			
LEFT PRIMER	196	20	60.34	50.00	5.00	2.00	cacactgtttgaagcgttgg			
RIGHT PRIMER	392	20	60.25	45.00	4.00	2.00	aagaaggcaagcaaacatgg			
HYB OLIGO	290	24	56.37	33.33	7.00	4.00	cctcaaagtcagaatttataatgc			
SEQUENCE SIZE: 1560										
INCLUDED REGION SIZE: 1560										

PRODUCT SIZE: 197, PAIR ANY COMPL: 6.00, PAIR 3' COMPL: 2.00

- 1 tcccraggtagaggaggcgaaacttcaaagtggcattgggtgaatttgaaattggtgtca
- 61 tttcgaagtggatttcaattcataagttgaatttcgaaatcataagttgaatttcaaaat
- $121\ {\tt catttcgaaatgaccttccaacttgcagcagttattttcaaatggtcataacttcttcat}$
- 181 ttcagctctaatttgcacactgtttgaagcgttggactcctgacttcctgagctttgaaa >>>>>>>>>
- ${\tt 241}\ {\tt cgatatatagtatgtatataatagactctataaagtcctctaaatttttcctcaaagtca}$
- 301 gaatttataatgccatcagatttttgagttctaaatttccatgcaactgaatcttgcttc
- 361 atgtctcatttcccatgtttgccttgccttctttattactccataatggtcatttctcat
- 421 ttccaaatgcattatatcctcgtcttgccttttcttatggtccatgagtcttgactcact

PCR SPECIFIC POLYMORPHISMS

7) International pubblications (Theor Appl Genet, Mol Biotechnol; Annals of Applied Biology)

Annals of Applied Biology ISSN 0003-4746

RESEARCH ARTICLE

Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assess the clonal selection of grapevine: the case study of Manto Negro, Callet and Moll, autochthonous cultivars of Majorca

E. Cretazzo¹, S. Meneghetti², M.T. De Andrés³, L. Gaforio³, E. Frare² & J. Cifre¹

CULTIVARS FROM MALLORCA

Mol Biotechnol DOI 10.1007/s12033-011-9403-9

RESEARCH

Study of Intra-Varietal Genetic Variability in Grapevine Cultivars by PCR-Derived Molecular Markers and Correlations with the Geographic Origins

Stefano Meneghetti · Angelo Costacurta · Giacomo Morreale · Antonio Calò

PRIMITIVO, MALVASIA BR/LE, NEGROAMARO

Mol Biotechnol DOI 10.1007/s12033-011-9423-5

RESEARCH

Inter- and Intra-Varietal Genetic Variability in Malvasia Cultivars

Stefano Meneghetti · Danijela Poljuha · Enrica Frare · Angelo Costacurta · Giacomo Morreale · Luigi Bavaresco · Antonio Calò

MALVASIA ISTRIANA

Mol Biotechnol (2011) 48:244-254 DOI 10.1007/s12033-010-9365-3

RESEARCH

Clones Identification and Genetic Characterization of Garnacha Grapevine by Means of Different PCR-Derived Marker Systems

Stefano Meneghetti · Angelo Costacurta · Enrica Frare · Graziana Da Rold · Daniele Migliaro · Giacomo Morreale · Manna Crespan · Vicente Sotés · Antonio Calò

GARNACHA GRENACHE CANNONAO

Theor Appl Genet DOI 10.1007/s00122-010-1411-9

ORIGINAL PAPER

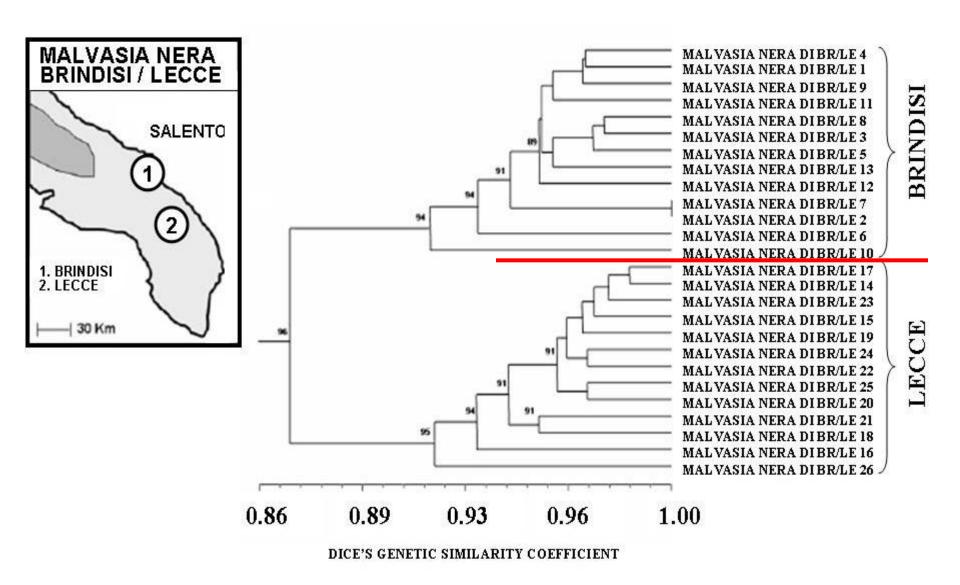
The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin

Guido Cipriani · Alessandro Spadotto · Irena Jurman · Gabriele Di Gaspero · Manna Crespan · Stefano Meneghetti · Enrica Frare · Rita Vignani · Mauro Cresti · Michele Morgante · Mario Pezzotti · Enrico Pe · Alberto Policriti · Raffaele Testolin

SSR LONG REPEATS

Mol Biotechnol DOI 10.1007/s12033-011-9475-6

RESEARCH

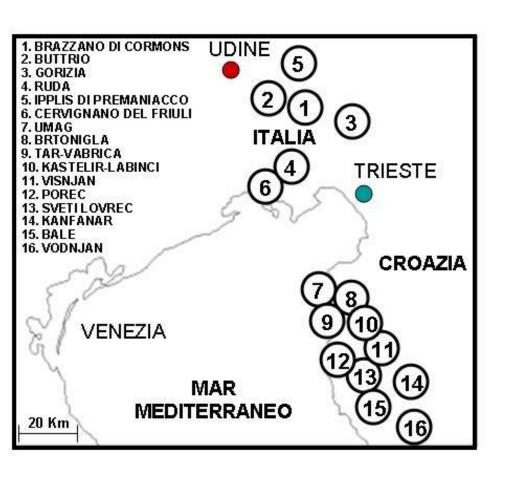

A Strategy to Investigate the Intravarietal Genetic Variability in *Vitis vinifera* L. for Clones and Biotypes Identification and to Correlate Molecular Profiles with Morphological Traits or Geographic Origins

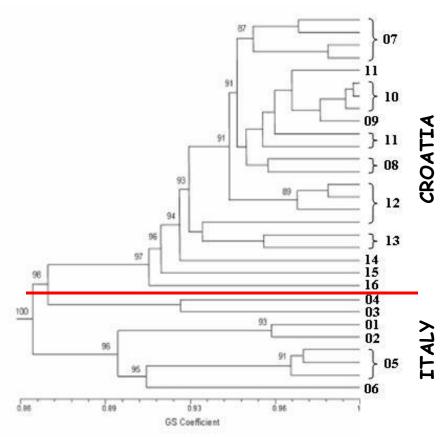
Stefano Meneghetti · Antonio Calò · Luigi Bavaresco

MALVASIA of CANDIA

MALVASIA NERA DI BRINDISI / LECCE

26 accessions of Malvasia nera di Brindisi-Lecce from Brindisi and Lecce provinces




MALVASIA ISTRIANA

30 accessions of Istrian Malvasia: 8 Italian Clones by VCR, ISV and ERSA Institutes and 22 autochthonous grapevine accessions grown in Crotia.

MALVASIA CANDIA

30 biotypes of Malvasia di Candia S.S. from Frascati DOC - Rome (Italy)

CONCLUSIONS

The molecular strategy here adopted permitted:

- 1. to identify different accessions, biotypes, and clones of Malvasia cultivars
- 2. to correlate the genetic differences to their geographical origins or morphological traits.

This genetic variability accumulated during centuries of cultivations and selections should be both recognized and preserved when these claims are corroborated by scientific experimental results.

Thus, it is important not to lose the genetic variability of the biotypes by avoiding the vine nursery practice to propagate the same clone for different cultivation areas.

It would be really useful to promote the propagation of the typical autochthon biotypes, which are possibly already wisely selected by the vine grower because adapted to their environments.

THANKS