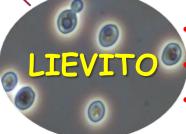
La microbiologia per i vini rosati

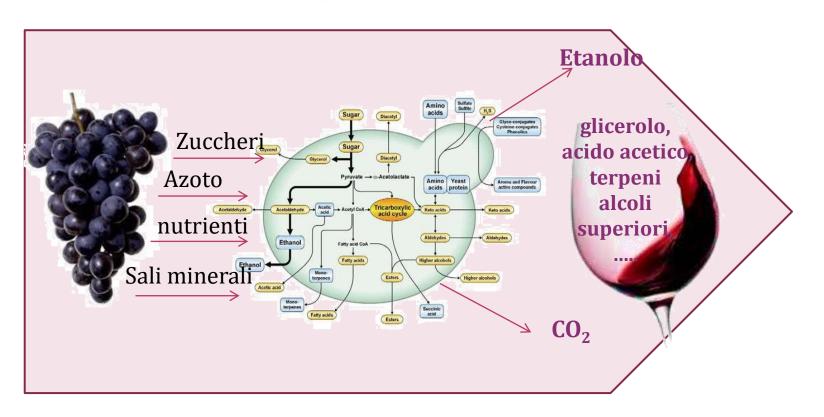
Angela Capece

Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali (SAFE)

Università degli Studi della Basilicata



- · Cultivar
- · Condizioni colturali
- · Stato sanitario


- ·Trattamenti del mosto
- ·Controllo dei parametri di processo
- ·Trattamenti di stabilizzazione

- ·Attività fermentativa LIEVITO Composti aromatici
 - ·Composti salutistici

Qual'è il ruolo del lievito nella trasformazione mosto vino?

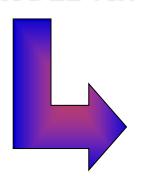
La cellula di lievito: «un laboratorio di biotrasformazione»

INOCULATA

FERMENTAZIONE

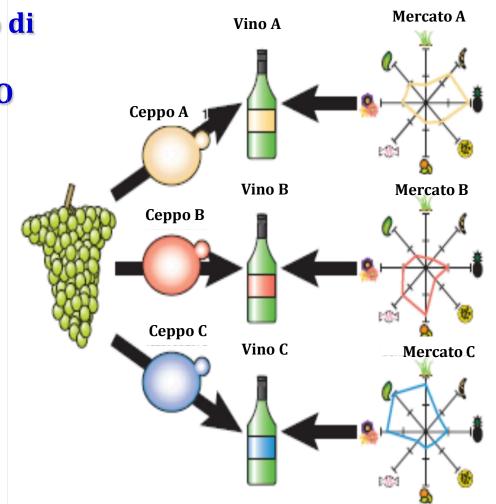
Pratica corrente: fermentazione inoculata con *S*.

cercoisiae


Scelta come lievito starter

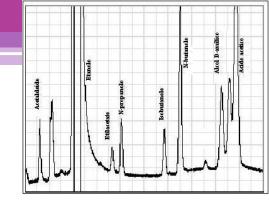
Lievito principale della fermentazione alcolica

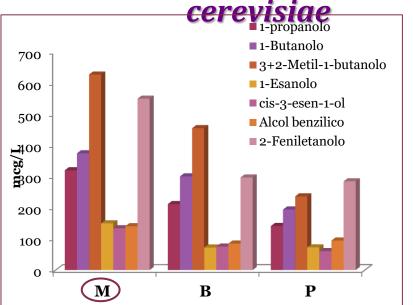
Saccharomyces cerevisiae

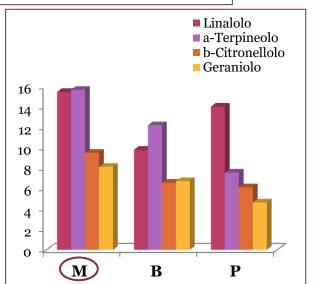


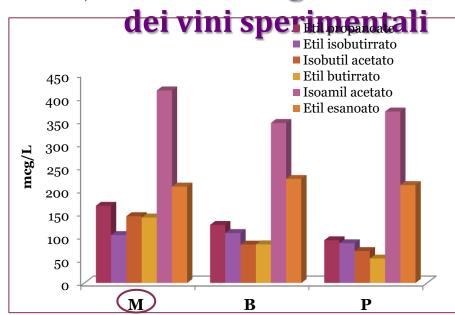
Impronta del ceppo di lievito sulla QUALITÀ DEL VINO

Ceppo di li vito


Mosto d'uva


Fermentazione stesso mosto con


16 ceppi di *S. cerevisiae* Analisi gas-cromatografica dei vini sperimentali


Composto	Contenuto vini sperimentali (mg/L) •	Range usuale (mg/L)	Descrittore aroma
Acetaldeide	35,3-197,8	10-75	Fruttato
Acetato di etile	9,8-15,4	5-63,5	Fruttato, solvente, balsamico
N-propanolo	28,5-41,5	9-68	Pungente, alcol solvente
Isobutanolo	32,8-54,3	40-140	Fruttato, alcol, solvente
Amilico attivo	72,8-122,7	15-150	Mandorla
Isoamilico	116,9-294,9	45-490	Alcol

Fermentazione 3 mosti diversi con lo stesso ceppo di *S*.

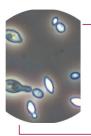
Analisi gascromatografica

MOSTO M: MIGLIORE ESPRESSIONE AROMATICA

Scelta dello starter in funzione di

Mosto da fermentare

Tecnica di vinificazione



Lieviti indigeni selezionati

Lieviti non-Saccharomyces

Poca attenzione all'impiego di lieviti specifici

Lieviti commerciali

Esempio caratteristiche lieviti commerciali:

- > Raccomandato per: tipo di vino (es. rosso tannico, rosso giovane, rosè, bianco secco,....) e varietà:
- > Temperatura di fermentazione (range);
- ➤ Alcol-tolleranza:
- Velocità di fermentazione;
- > Produzione di schiuma;
- > Flocculazione:
- > Produzione di:
 - > acidità volatile;
 - $\gt SO_2$;
 - \rightarrow H₂S;
- Esigenze nutrizionali;

Uso degli stessi lieviti per fermentare mosti diversi

Uniformit à dei vini

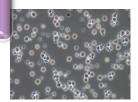
Lieviti commerciali uguali usati in tutto il mondo

Lieviti indigeni selezionati

Raccolta grappoli uva in vigna

Pigiatura e fermentazione spontanea su scala di laboratorio

Isolamento lieviti in fase tumultuosa e finale della fermentazione



Caratterizzazione di Saccharomyces cerevisiae


Scelta del ceppo più idoneo

Selezione di un ceppo indigeno: M3-

Caratteristiche del ceppo selezionato:

- *Alto livello di resistenza a composti antimicrobici (14% EtOH, 300 ppm SO₂, 400 μm CuSO₄)
- **❖**Elevata velocità di fermentazione
- **❖**Livello medio di produzione di H2S
- ❖ Produzione bilanciata di composti secondari



ANALISI DEI VINI

Parametri	M3-59	CS
	1413-37	CS
Acidità totale	7,9	6,6
Acidità volatile	0,40	0,42
Glucosio + fruttosio	0,0	0,0
Etanolo	13,81	13,44
Acetaldeide	16,93	18,25
Etil acetato	24,30	26,82
N-propanolo	28,75	27,78
Isobutanolo	30,57	59,88
Alcol D-amilico	97,32	165,19
Alcol isoamilico	145,58	322,60

Degustazione dei vini

La degustazione dei vini conferma le differenze

Lieviti commerciali

Selezionati per parametri standard

Stessi lieviti utilizzati per prodotti diversi Appiattimento caratteristiche qualitative dei prodotti

Lieviti indigeni

Espressione della biodiversità del territorio

Selezionati in funzione del prodotto

Salvaguardia delle caratteristiche di tipicità

Lieviti non-Saccharomyces (lieviti non convenzionali)


- Predominanti nelle prime fasi del processo fermentativo
- Significativa presenza anche nel caso di fermentazioni inoculate

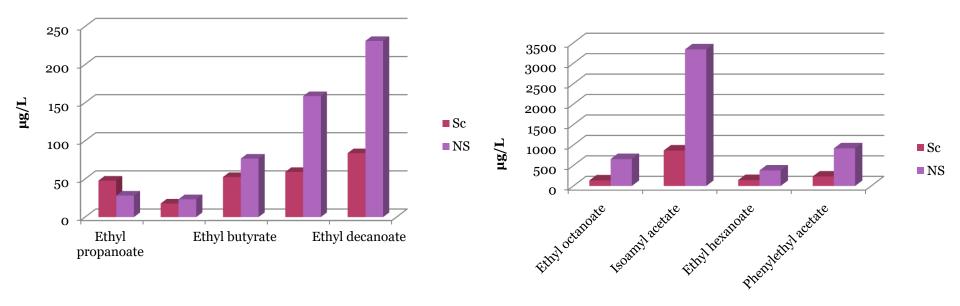
Lieviti non-Saccharomyces

Influenza sull'aroma del vino

- Caratteristiche enologiche assenti in Saccharomyces cerevisiae
- Presenza di attività enzimatiche
- Ceppi selezionati usati in associazione con *S. cerevisiae.*
- Starter «in Starter

β-glucosidasi

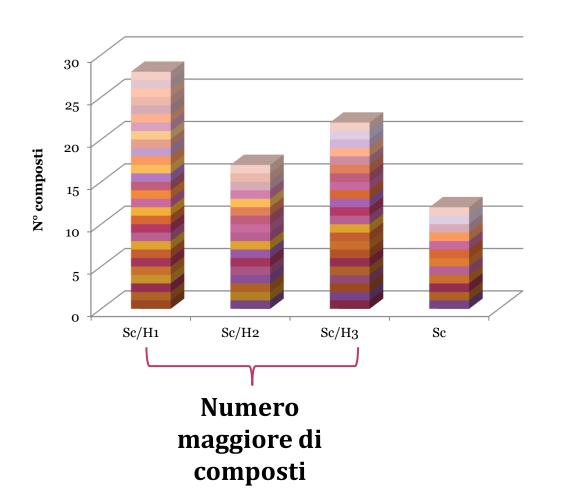

TERPENOLI linalolo α-terpenico geraniolo nerolo citronellolo


NORISOPRENOIDI β-ionone β-damascone vitispirano

ALCOLI BENZENOICI alcol benzilico 2-feniletanolo

Vini sperimentali ottenuti inoculando 1 starter misto (NS), composto de 1 ceppo selezionato di *S. cerevisiae* + 1 ceppo selezionato di *H. uvarun* in confronto alla starter singolo di *S. cerevisiae* (Sc)

Lievito non-*Saccharomyces* determina una maggiore concentrazione di esteri


Positivo il suo impiego per la produzione di vini rosati Vini sperimentali ottenuti inoculando 3 starter misti, composti da:

1 ceppo selezionato di *S. cerevisiae* (Sc)

3 ceppi selezionati di *H. uvarum* (H1, H2, H3)
in confronto alla starter singolo di *S. cerevisiae* (Sc)

H1

H2

Conclusioni

1. Il lievito starter rappresenta un importante strumento per modulare le caratteristiche del vino

2. Il processo di selezione deve prevedere lo studio di numerosi caratteri di cantina
Influenza sulla qualità
del vino

Performance su scala

Performance fermentativa in laboratorio

Resistenza a compos antimicrobici

3. FONDAMENTALE: Utilizzo di ceppi di lievito specifici per il vino che si vuole produrre

Lievito a misura di vino

Vasta collezione di lieviti provenienti da uve di diverse varietà e origine

Collezione starter

Lievito a misura di vino

